Determinants of metabolic cost during submaximal cycling.
نویسندگان
چکیده
The metabolic cost of producing submaximal cycling power has been reported to vary with pedaling rate. Pedaling rate, however, governs two physiological phenomena known to influence metabolic cost and efficiency: muscle shortening velocity and the frequency of muscle activation and relaxation. The purpose of this investigation was to determine the relative influence of those two phenomena on metabolic cost during submaximal cycling. Nine trained male cyclists performed submaximal cycling at power outputs intended to elicit 30, 60, and 90% of their individual lactate threshold at four pedaling rates (40, 60, 80, 100 rpm) with three different crank lengths (145, 170, and 195 mm). The combination of four pedaling rates and three crank lengths produced 12 pedal speeds ranging from 0.61 to 2.04 m/s. Metabolic cost was determined by indirect calorimetery, and power output and pedaling rate were recorded. A stepwise multiple linear regression procedure selected mechanical power output, pedal speed, and pedal speed squared as the main determinants of metabolic cost (R(2) = 0.99 +/- 0.01). Neither pedaling rate nor crank length significantly contributed to the regression model. The cost of unloaded cycling and delta efficiency were 150 metabolic watts and 24.7%, respectively, when data from all crank lengths and pedal speeds were included in a regression. Those values increased with increasing pedal speed and ranged from a low of 73 +/- 7 metabolic watts and 22.1 +/- 0.3% (145-mm cranks, 40 rpm) to a high of 297 +/- 23 metabolic watts and 26.6 +/- 0.7% (195-mm cranks, 100 rpm). These results suggest that mechanical power output and pedal speed, a marker for muscle shortening velocity, are the main determinants of metabolic cost during submaximal cycling, whereas pedaling rate (i.e., activation-relaxation rate) does not significantly contribute to metabolic cost.
منابع مشابه
Dietary quercetin supplementation is not ergogenic in untrained men.
Quercetin supplementation increases muscle oxidative capacity and endurance in mice, but its ergogenic effect in humans has not been established. Our study investigates the effects of short-duration chronic quercetin supplementation on muscle oxidative capacity; metabolic, perceptual, and neuromuscular determinants of performance in prolonged exercise; and cycling performance in untrained men. ...
متن کاملTorso stabilization reduces the metabolic cost of producing cycling power.
Many researchers have used cycling exercise to evaluate muscle metabolism. Inherent in such studies is an assumption that changes in whole-body respiration are due solely to respiration at the working muscle. Some researchers, however, have speculated that the metabolic cost of torso stabilization may contribute to the metabolic cost of cycling. Therefore, our primary purpose was to determine w...
متن کاملEffects of Pedal Speed and Crank Length on Pedaling Mechanics during Submaximal Cycling
UNLABELLED During submaximal cycling, the neuromuscular system has the freedom to select different intermuscular coordination strategies. From both a basic science and an applied perspective, it is important to understand how the central nervous system adjusts pedaling mechanics in response to changes in pedaling conditions. PURPOSE To determine the effect of changes in pedal speed (a marker ...
متن کاملEffects of a helium/oxygen mixture on individuals’ lung function and metabolic cost during submaximal exercise for participants with obstructive lung diseases
BACKGROUND Helium/oxygen therapies have been studied as a means to reduce the symptoms of obstructive lung diseases with inconclusive results in clinical trials. To better understand this variability in results, an exploratory physiological study was performed comparing the effects of helium/oxygen mixture (78%/22%) to that of medical air. METHODS The gas mixtures were administered to healthy...
متن کاملCorrelations between physiological variables and performance in high level cross country off road cyclists.
OBJECTIVES To examine the relations between maximal and submaximal indices of aerobic fitness and off road cycling performance in a homogeneous group of high level mountain bikers. METHODS 12 internationally competitive mountain bikers completed the study. Maximum oxygen uptake (Vo(2max)), peak power output (PPO), power output (PO), and oxygen uptake (Vo(2)) at first (VT) and second (RCT) ven...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 93 3 شماره
صفحات -
تاریخ انتشار 2002